-9=-(x^2-6x-9)

Simple and best practice solution for -9=-(x^2-6x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -9=-(x^2-6x-9) equation:



-9=-(x^2-6x-9)
We move all terms to the left:
-9-(-(x^2-6x-9))=0
We calculate terms in parentheses: -(-(x^2-6x-9)), so:
-(x^2-6x-9)
We get rid of parentheses
-x^2+6x+9
We add all the numbers together, and all the variables
-1x^2+6x+9
Back to the equation:
-(-1x^2+6x+9)
We get rid of parentheses
1x^2-6x-9-9=0
We add all the numbers together, and all the variables
x^2-6x-18=0
a = 1; b = -6; c = -18;
Δ = b2-4ac
Δ = -62-4·1·(-18)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{3}}{2*1}=\frac{6-6\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{3}}{2*1}=\frac{6+6\sqrt{3}}{2} $

See similar equations:

| 12m-7m2+64=0 | | -4(4+7y)+5+3y=y=2 | | 5p-8=-3 | | -6(a+3)=18 | | 11x-22=-52 | | 10+0.29x=3+0.35x | | x2-100x+2400=0 | | 1.85x^2-15x-15=0 | | 1.3x^2-15x-15=0 | | -4.3+7=5x-3.9 | | 18x-2x=4 | | -5(-2x+3)=25 | | 250+25x=50 | | 8p-2=12-2 | | 8p+4=12+4 | | 7x+-5=51 | | 8p/8=12/12 | | 8p/8=12/8 | | 3h-h-1=19 | | 10t-6t+t+1=6 | | 20t-19t=16 | | 4^2+8^2=x^2 | | 4u-2u+3u-1=19 | | 17r-7r-2=18 | | x^2+5^2=6^2 | | 10s-5s-4s=7 | | 6/2/3=n | | 9d+4d-10d+2d=20 | | x^2+1.5^2=2.5^2 | | 0=-x^2+6+18 | | 6^2+x^2=8^2 | | 8x+11+9x-7=8x+12 |

Equations solver categories